Allosteric conformational change cascade in cytoplasmic dynein revealed by structure-based molecular simulations

نویسندگان

  • Shintaroh Kubo
  • Wenfei Li
  • Shoji Takada
چکیده

Cytoplasmic dynein is a giant ATP-driven molecular motor that proceeds to the minus end of the microtubule (MT). Dynein hydrolyzes ATP in a ring-like structure, containing 6 AAA+ (ATPases associated with diverse cellular activities) modules, which is ~15 nm away from the MT binding domain (MTBD). This architecture implies that long-distance allosteric couplings exist between the AAA+ ring and the MTBD in order for dynein to move on the MT, although little is known about the mechanisms involved. Here, we have performed comprehensive molecular simulations of the dynein motor domain based on pre- and post- power-stroke structural information and in doing so we address the allosteric conformational changes that occur during the power-stroke and recovery-stroke processes. In the power-stroke process, the N-terminal linker movement was the prerequisite to the nucleotide-dependent AAA1 transition, from which a transition cascade propagated, on average, in a circular manner on the AAA+ ring until it reached the AAA6/C-terminal module. The recovery-stroke process was initiated by the transition of the AAA6/C-terminal, from which the transition cascade split into the two directions of the AAA+ ring, occurring both clockwise and anti-clockwise. In both processes, the MTBD conformational change was regulated by the AAA4 module and the AAA5/Strut module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Motors: Dynein's Gearbox

A new optical trapping study shows that the stepsize of cytoplasmic dynein varies according to the applied force, suggesting that this motor can change gear. Complementary biochemical kinetic work on yeast dynein mutants hints at the allosteric mechanisms involved.

متن کامل

Allosteric Communication in the Dynein Motor Domain

Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational chang...

متن کامل

Dynamic allostery of protein alpha helical coiled-coils.

Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for transmitting the information of ligand binding to a distant site across an allosteric protein, an alternative to conformational change in the mean static structure is an induced change in the pattern of the internal dynami...

متن کامل

Elastic properties of dynein motor domain obtained from all-atom molecular dynamics simulations

Dyneins are large microtubule motor proteins that convert ATP energy to mechanical power. High-resolution crystal structures of ADP-bound cytoplasmic dynein have revealed the organization of the motor domain, comprising the AAA(+) ring, the linker, the stalk/strut and the C sequence. Recently, the ADP.vanadate-bound structure, which is similar to the ATP hydrolysis transition state, revealed ho...

متن کامل

Unraveling the Allosteric Inhibition Mechanism of PTP1B by Free Energy Calculation Based on Umbrella Sampling

Protein tyrosine phosphatase 1B (PTP1B) is a promising target for the treatment of obesity and type II diabetes. Allosteric inhibitors can stabilize an active conformation of PTP1B by hindering the conformational transition of the WPD loop of PTP1B from the open to the closed state. Here, the umbrella sampling molecular dynamics (MD) simulations were employed to compute the reaction path of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017